
Design Guidelines

1

2

Overview

• UI design is primarily about supporting interaction

– Models of Interaction

– Don Norman: Examples from every day things

– Conceptual Approaches to UI Design

• Affordance Language

• Paul Grice (1967), Alan Cooper (1999), Isaacs & Walendowski: Examples

from butlers

• Extending Collaborative Behaviour from Designing from both sides of the

screen by Isaacs and Walendowski

• Designing Interactive Systems: People, Activities, Contexts, Technologies,

by Benyon, Turner, and Turner

– Concrete Guidelines

• Gnome

• Apple’s OS X Human Interface Guidelines

3

Models of Interaction

• Don Norman, The
Design of Everyday
Things, developed a
general model of
interaction with things
(1980)

4

Execution and Evaluation

• Intention: a specific

action taken to reach

the goal

• Action Sequence: a

specific list of things

to do

5

Gulfs of Execution; Evaluation

• Gulf of Execution:
Difficulty in translating
the user’s intentions
into actions allowed by
system. Can the user
carry out their
intentions directly?

• Gulf of evaluation:
Difficulty in interpreting
the state of the system
to determine whether
the intentions have
been met.

6

Gulfs of Execution; Evaluation

• Value:

Provides concrete

questions to ask

when evaluating a

system

7

Interaction Framework

• Extends Norman’s model:
– Includes system state

explicitly

• Four nodes:
– System, User, Input and

Output

– Each node has own
language:

• System language = core
language

• User language = task language

• Input and Output languages
form the interface

– Translates between core and
task language

System
Core Language

User
Task
Language

I O

Articulation

Performance Presentation

Observation

Interaction Framework

System
Core Language

User
Task

Language

I O

Articulation

Performance Presentation

Observation

Controller View

Data

Model

User
Task

Language

Value: Links nicely to MVC architecture

Value: Conceptualizes design of UI as translation between two

languages

Models of Interaction

• High level overview of “what the UI is all about”

– Mediates between things a user wants to do and
things a system can do

– Translates between those two world views

• UI Design translates between task language and
core language

• Ultimate goal of design is to guide use of the
system

• Norman’s book The Design of Everyday Things

extensively discusses how design guides use

10

Norman: Everyday Things -- Doors

11

Norman: Everyday Things -- Doors

12

Norman: Everyday Things -- Phone

• Pick up incoming call

• Call another phone (local, long
distance, extension, speed dial)

• Call operator, directory
assistance, help

• Program speed dial

• Form a three-way conference call

• Transfer incoming call

• Place caller on hold

• Last number redial

Possible Actions:

Manual’s instructions for redial: “
1. Press free line key.
2. Press ‘Last No.’ or press the line key again.”

13

Norman: Everyday Things -- Phone

• Voice Mail:
– Log on (from this phone, from another pone in the system, from a phone

outside the system)

– Log off

– Change password

– Record personal verification

– Record external greeting (record, reply, delete)

– Bypass greetings

• Voice Mail (cont):
– Play messages (pause, next msg, prev. msg, continue, skip back, skip forward,

delete msg, restore msg)

– Reply/Forward/Compose/Tag message

– Set timed delivery

– Compose distribution list

– Thru-dial

14

Norman: Everyday Things -- Phone

15

Norman: Everyday Things -- Phone

16

Norman: Everyday Things -- Cars

17

Norman: Everyday Things -- Fridge

Suppose the refrigerator is at the correct temperature.
The freezer is too cold. What do you do?

PS: You can’t really check your work until after the
refrigerator has stabilized for 24 hours and has been left
closed for at least an hour or two.

18

Norman: Everyday Things -- Fridge

• The natural conception
model is two independent
controls.

• Reality:
– Only the freezer is

controlled with a
thermostat (set with one
of the knobs).

– The fresh food
compartment is cooled by
redirecting some
proportion of the cold air
from the freezer.

19

Discussion

• What guidelines for user interfaces are

suggested by these observations of everyday

things?

20

Mental Models

• Not to be confused with models of interaction!

• A conceptual model of how things work

– Essentially cause and effect, or hypotheses about
behaviour

• If I do this, then system does that

• Frequently, models are inaccurate or incomplete

Thermostats for house and car

21

Mental Models

• How many ‘models’ of the system?

• Developer’s Model

– How the programmer(s) of system believe(s) system
should be used

• System image

– The system itself

• User’s Model

– How the user of a system believes system should be used

• Developer and User communicate via system

– Goal is to have both images align as closely as possible

Mental Models

• User model and
developer model of
system are both
“Mental Models” of
system

– GUI is vehicle for
aligning these mental
models

– Guidelines aid UI
designer in aligning
models

System
Core Language

User
Task
Language

I O

Articulation

Performance Presentation

Observation

Conceptual Approaches to UI Design

• Affordance Language

• Paul Grice (1967), Alan Cooper (1999), Isaacs
& Walendowski: Examples from butlers

• Extending Collaborative Behaviour from
Designing from both sides of the screen by
Isaacs and Walendowski

• Designing Interactive Systems: People,

Activities, Contexts, Technologies, by Benyon,
Turner, and Turner

24

Affordance Language

• Purpose is guiding usage

– Done by applying certain design principles to UI

– Allows users to perceive what should be done, to

map action onto display

• Essentially brings designer’s model and user’s

model of system into alignment if done well.

• Set of principles to promote alignment of

models

25

UI Design Principles

(from Preece, Rogers, Sharp)

• Components of an Affordance Language:

– Affordance

– Mapping

– Constraints

– Visibility/Feedback

– Consistency

– Metaphor

26

Affordance

• Attribute of an object that allows people to know how to use it

• Coined by Norman
– Means “to give a clue”

– Book: The Design of
Everyday Things

• Norman’s current
argument:
– Should not pay too much

attention during UI design

– Objects have “real
affordances”

– Screen widgets have
“perceived affordances”

– Learned conventions

Push Pull

Waterloo

Mental Models and Affordance

• Recall thermostat examples

– My flower version

28

Mental Models and Affordance

• Consider thermostat

– What was wrong with my flower model?

Affordance and Mental Models

• What influences our perception of affordances

and the manner in which we develop mental

models?

– Individual histories

– Cultural background

• Examples where you have developed an

incorrect model or misunderstood affordance

when travelling?

30

Mapping

• Physical actions performed on the device must be mapped
onto on-screen effects

• Instruments operations must be mapped onto objects

• Recall instrumental interaction

– Degree of integration

– Degree of compatibility

31

Physical Versus Virtual

• Some things work well in physical, not in virtual

This user interface (UI) is simply hideous.

Form and function have been sacrificed to

looks, in the sense that it's appearance is

mimicking a physical piece of equipment.

Trying to adjust the parameters with the

mouse is difficult and error-prone, and I

am not brave enough to try using the

keyboard - I don't even know how I would

do that.

Virtual

Physical

32

Principle: Mappings

• Mappings: “The relationship between two
things, in this case between the controls and their
movements and the results in the world.”
– Car:

• Natural mapping between turning the steering wheel and
turning the car.

• Less natural for turn signals (up = left, down = right, but…)
• Not so natural for adjusting the sound between the front and

rear speakers.
– Doors: bars/plates for pushing, handles for pulling

– Conventions: up/clockwise for “more”

• GUIs: Components often mimic physical controls
and follow same conventions and mappings.

33

Constraints

• Guide user by preventing certain actions,

enabling others

34

Constraints

• Physical

– Only one way to
connect

– Disabled
buttons/menus

• Logical

– My Documents, My
Pictures, etc.

• Cultural

– Examples?

Cultural Constraints

Next Prev

36

Visibility/Feedback

• Recall principles of direct manipulation

• Continuous
representation

• Actions on objects of
interest

• Fast, incremental
operations with
immediate feedback

• Layered
learning/self-
revealing

37

Principle: Visibility

• Visibility: “The correct parts must be visible and
they must convey the correct message.”
– Doors: Parts often gave the wrong message (pull vs.

push)

– Phones:
• No visible indication of many available functions

• Access to functions is arbitrary (meaningless) key sequences

– Cars: most functions have a visible control

• GUIs: Make controls visible, either on-screen on
in menus. List keyboard short-cuts in menus.

Component Feedback

• Does component effectively communicate:

– That it is enabled/disabled?

– That it is active/inactive?

– Its current state?

• Does it adhere to principles of consistency and

congruency across these dimensions?

• Does feedback communicate affordances?

• Can user build a suitable mental model?

UI Feedback

• When user acts

– Does something happen on screen?

– Is the user able to perceive new state of system
model once action is complete?

• Examples of poor feedback?

– Creating symbolic links in Linux

– Sometimes “Undo” operations if they don’t
correctly communicate new state.

– Etc.

40

Principle: Feedback

• Feedback: “Sending back to the user information
about what action has actually been done; what result
has been accomplished.”
– Phones: How do you know you pressed the right sequence

of buttons?

– Car: lots of physical feedback
• “G” force when turning/accelerating/braking.

• Audio/visual feedback when blinkers are on.

– Refrigerator: Feedback loop is so terribly slow.

• GUIs: Every user action should give feedback. If it
results in something that can’t be completed
immediately, give some sort of progress indicator.

41

Consistency

• Allows users to leverage control from familiar

onto new

Consistency

• Does component conform to rest of interface’s
conventions?

– Consider both appearance and interaction

• Inconsistency can lead to

– User frustration

– Increased learning time

– Errors

• Inconsistency should be carefully considered

Metaphors

• Set of unifying concepts in a GUI used to simplify
interaction with a computer system

• Done by borrowing concepts from one domain (the
source or vehicle) and applying them to another (the
target or tenor)

• Scale can vary from system to application to UI feature

• Examples:

– The desktop metaphor in windowing systems

– Assembly-line metaphor for a payment system of a car
manufacturer …

– The spring metaphor in iPhone/iPad apps

Benefits of Metaphors (2)

• Common language for objects
– Window, Recycle Bin/Trash, Folders, Files

• Guide for cognitive semantics of system
– Windows allow you to look into a house or into a

document

– Recycling allows you to reclaim storage

• Analogy to explore similarities and differences
– Computer window has scrollbars, more similar to a

repositionable viewport

– Differences arise because characteristics of the
target/tenor cause inconsistencies in the metaphor

Inconsistencies in Metaphors

• Original Mac trash

– Delete files on computer

– Eject disk from drive

• File system metaphor

– Original Mac had all file systems on desktop

– BeOS had external drives on the desktop and

internal drives in a “Computer” icon

– Windows had all file systems in a “Computer” icon

Inconsistencies in Metaphors(2)

• Inconsistencies arise because design metaphors are
really blends

• Combine concepts that map from source with concepts
that are inherent in target
– Windows combine physical windows with the constraint of

sharing screen space

– Folders blend the concept of physical folders with location-
based file storage

• So …
– You need a good mapping

– But you must also break that mapping to reveal needed
details of target domain

System
Core Language

User
Task
Language

I O
Articulation

Performance Presentation

Observation

Metaphor Design

• Given an idea for a metaphor, contrast features of
source and target domain

• Analyze relationship between features

– Too many features from base domain results in
conceptual baggage

– Too few features leads to confusion, poor mapping,
poor metaphor

• Experiment (e.g. person-down-the-hall testing) to
see if people can use metaphors to derive
expectations of behaviours

Guidelines for Designing Metaphors

• Integration
• Are metaphors coherent? Do they support a structured mapping

across concepts in the metaphor?

• Unpacking
• Can people determine why each component of the metaphor was

included? Are the things chosen for inclusion cohesive?

• Topology
• Is there a similarity in structure (abstract or concrete) between the

source and target domain?

• Analysis
• Can users use the metaphor to infer functionality?

• Visual Presentation
• Can objects and actions be presented in a way that guides user to

metaphor’s concepts?

Congruence of models

• Is the component congruent with our

understanding of the world?

• Can we transfer mental models from the real-

world or other phenomena to our

understanding of component and its usage?

50

Principle: Congruence

• “A good conceptual model allows us to predict
the effects of our actions. Without a good model
we operate by rote, blindly; we do operations as
we were told to do them; we can’t fully
appreciate why, what effects to expect, or what
to do if things go wrong. As long as things work
properly we can manage. When things go wrong,
however, or when we come upon a novel
situation, then we need a deeper understanding,
a good model.”

51

Another Approach: Butlers

• Always available.

• Prepared to fulfil requests, with
few questions and no complaints.

• If there is a problem, he finds a way
to fix it or work around it without
bother his employer.

• He rarely interrupts to suggest ways he can be helpful.
Instead, he pays attention to what his employer has done in
the past so he can better anticipate what she will want in
the future. Still, doesn’t go overboard.

• He makes a special effort to be courteous and respectful,
even when his employer asks for things he can’t do.

52

Respecting User Effort

• One of the best take aways of the Butler

material is to respect the user’s effort

– Respect their physical effort

– Respect their mental effort

53

Respect Physical Effort

• “Think of physical effort as a measure of the
effort required to use your technology…. Each
click represents another step in the process, and
after a short while, those steps add up so that
using your technology feels burdensome rather
than pleasant.”

– Treat clicks as sacred

– Remember where they put things

– Remember what they told you

– Stick with a mode

54

Respect Mental Effort

• “Just as you should reduce your customers’ physical
effort, you should also reduce their mental effort. You
want to leave them as much mental energy as possible
so they can flow with their task and forget about the
technology entirely.”

– Use visual elements sparingly

– Give feedback; show signs of progress

– Follow conventions (even if they aren’t your ideal design)

– Make common tasks visible; hide infrequent tasks

– Keep preferences to a minimum; use smart defaults

– Look for “widgetless features”

55

Extending Collaborative Behavior

• For decades, social scientists have been studying
collaborative behavior, particularly as it relates to
conversation. We use some of their observations
in drawing up our own rules about how
technology should cooperate with people. There
are two types of politeness: negative politeness
and positive politeness.
– To be negatively polite one should do no harm; don’t

ask too much of people, don’t impose, don’t offend...

– If you want to delight your users, you can design it to
be ‘positively polite’ by actively cooperating...

• Designing from both sides of the screen, p.12

56

Cooperative Principles for Tech

• Don’t Impose (negative politeness)
– Respect the user’s physical effort

– Respect the user’s mental effort

• Be Helpful (positive politeness)
– Offer sufficient information early and in context;

prevent errors

– Solve problems; don’t complain or pass the buck

– Be predictable

– Request and offer only relevant information; don’t
mislead

– Explain in plain language

57

An Overview List

• High-Level Statement:

Helping people access, learn, and remember

the system while giving them the sense of

being in control, knowing what to do and how

to do it safely and securely in a way that suits

them.

• From Designing Interactive Systems: People, Activities,

Contexts, Technologies, by Benyon, Turner, and Turner,

Addison-Wesley, 2005, p. 65-66.

58

• Helping people access, learn, and remember the system…

• Visibility: Try to ensure that things are visible so that
people can see what functions are available and what
the system is currently doing.

• Consistency: Be consistent in the use of design
features and be consistent with similar systems and
standard ways of working.

• Familiarity: Use language and symbols that the
intended audience will be familiar with.

• Affordance: Design things so it is clear what they are
for.

59

• Giving them the sense of being in control, knowing what to do
and how to do it……

• Navigation: Provide support to enable people to move
around the parts of the system: maps, directional signs
and information signs.

• Control: Make it clear who or what is in control and
allow people to take control. Control is enhanced if
there is a clear, logical mapping between controls and
the effect that they have.

• Feedback: Rapidly feed back information from the
system to people so that they know what effect their
actions have had.

60

• Safely and securely……

• Recovery: Enable recovery from actions,

particularly mistakes and errors, quickly and

effectively.

• Constraints: Provide constraints so that

people do not try to do things that are

inappropriate.

61

• In a way that suits them…

• Flexibility: Allow multiple ways of doing things so
as to accommodate users with different levels of
experiences and interest in the systems. Provide
people with the opportunity to change the way
things look or behave so that they can
personalize the system.

• Style: Designs should be stylish and attractive.

• Conviviality: Interactive systems should be polite,
friendly, and generally pleasant.

62

Example GNOME Guidelines

• GNOME Human Interface Guidelines (HIG)
– http://library.gnome.org/devel/hig-book/stable/

– “This document tells you how to create applications
that look right, behave properly, and fit into the
GNOME user interface as a whole.”

• Menu Examples:
– “Label menu items with verbs for commands and

adjectives for settings”

– “Make a menu item insensitive when its command is
unavailable”

– Provide an access key for every menu item.”

63

Example Apple Guidelines

• Apple OS X Human Interface Guidelines
– http://developer.apple.com/library/mac/#documentati

on/UserExperience/Conceptual/AppleHIGuidelines/Int
ro/Intro.html

• Menu Examples:
– “Use menu titles that accurately represent the items in

the menu.”

– “Make menu titles as short as possible without
sacrificing clarity.”

– “Avoid using an icon for a menu title.”

– “Ensure that a menu’s title is undimmed even when all
of the menu’s commands are unavailable.”

64

What Guidelines Provide

• Explicit, well-defined rules to follow
– Acceptable font sizes and styles
– Minimum spacings required between controls, borders

of panels
– Color schemes to avoid for sake of color blind users
– In many cases, these rules can be automatically

checked by compliance software
• Higher-level principles

– Consistency
– Use of metaphors
– WYSIWYG…
– These principles typically cannot be automatically

checked

65

Next Steps

• Guidelines only get you so far

• Need to test your app with real users -- as

early and often as possible.

